
Prototypical Contrastive Learning of
Unsupervised Representations

Junnan Li, Pan Zhou, Caiming Xiong, Richard Socher, Steven C.H. Hoi
Salesforce Research

Abstract

This paper presents Prototypical Contrastive Learning (PCL), an unsupervised rep-
resentation learning method that addresses the fundamental limitations of instance-
wise contrastive learning. PCL not only learns low-level features for the task
of instance discrimination, but more importantly, it implicitly encodes semantic
structures of the data into the learned embedding space. Specifically, we introduce
prototypes as latent variables to help find the maximum-likelihood estimation of
the network parameters in an Expectation-Maximization framework. We iteratively
perform E-step as finding the distribution of prototypes via clustering and M-step
as optimizing the network via contrastive learning. We propose ProtoNCE loss, a
generalized version of the InfoNCE loss for contrastive learning, which encourages
representations to be closer to their assigned prototypes. PCL achieves state-of-
the-art results on multiple unsupervised representation learning benchmarks, with
>10% accuracy improvements in low-resource transfer tasks1.

1 Introduction

Unsupervised visual representation learning aims to learn image representations from pixels them-
selves without relying on semantic annotations, and recent advances are largely driven by instance
discrimination tasks [1, 2, 3, 4, 5, 6, 7]. These methods usually consist of two key components: image
transformation and contrastive loss. Image transformation aims to generate multiple embeddings that
represent the same image, by data augmentation [2, 8, 9], patch perturbation [4], or using momentum
features [3]. The contrastive loss, in the form of a noise contrastive estimator [10], aims to bring
closer samples from the same instance and separate samples from different instances. Essentially,
instance-wise contrastive learning leads to an embedding space where all instances are well-separated,
and each instance is locally smooth (i.e. input with perturbations have similar representations).

Despite their improved performance, instance discrimination based methods share a common fun-
damental weakness: semantic structure of data is not encoded by the learned representations. This
problem arises because instance-wise contrastive learning treats two samples as a negative pair as
long as they are from different instances, regardless of their semantic similarity. This is magnified by
the fact that thousands of negative samples are generated to form the contrastive loss, leading to many
negative pairs that share similar semantics but are undesirably pushed apart in the embedding space.

In this paper, we propose prototypical contrastive learning (PCL), a new framework for unsupervised
representation learning that implicitly encodes the semantic structure of data into the embedding
space. Figure 1 shows an illustration of PCL. A prototype is defined as “a representative embedding
for a group of semantically similar instances”. We assign several prototypes of different granularity
to each instance, and construct a contrastive loss which enforces the embedding of a sample to be
more similar to its corresponding prototypes compared to other prototypes. In practice, we can find
prototypes by performing standard clustering on the embeddings.

1Code is available at: https://github.com/salesforce/PCL

Preprint. Under review.

ar
X

iv
:2

00
5.

04
96

6v
4 

 [
cs

.C
V

] 
 2

8 
Ju

l 2
02

0

https://github.com/salesforce/PCL




























Text Box
A problem in existing contrastive learning approaches is that they consider augmented images from two different images as negative pairs even if they share semantic similarity. This paper proposes a novel approach (called as PCL) which uses clustering on the learned representations in an Expectation Maximization framework to circumvent this problem.



Fine-grained prototypes (e.g. horse with man)

Instance-wise Contrastive Learning
Coarse-grained prototypes (e.g. horse)

Prototypical Contrastive Learning

Figure 1: Illustration of Prototypical Contrastive Learning. Each instance is assigned to multiple prototypes
with different granularity. PCL learns an embedding space which encodes the semantic structure of data.

We formulate prototypical contrastive learning as an Expectation-Maximization (EM) algorithm,
where the goal is to find the parameters of a Deep Neural Network (DNN) that best describes the data
distribution, by iteratively approximating and maximizing the log-likelihood function. Specifically,
we introduce prototypes as additional latent variables, and estimate their probability in the E-step by
performing k-means clustering. In the M-step, we update the network parameters by minimizing our
proposed contrastive loss, namely ProtoNCE. We show that minimizing ProtoNCE is equivalent to
maximizing the estimated log-likelihood, under the assumption that the data distribution around each
prototype is isotropic Gaussian. Under the EM framework, the widely used instance discrimination
task can be explained as a special case of prototypical contrastive learning, where the prototype for
each instance is its augmented feature, and the Gaussian distribution around each prototype has the
same fixed variance. The contributions of this paper can be summarized as follows:

• We propose prototypical contrastive learning, a novel framework for unsupervised representation
learning. The learned representation not only preserves the local smoothness of each image
instance, but also captures the hierarchical semantic structure of the global dataset.

• We give a theoretical framework that formulates PCL as an Expectation-Maximization (EM)
based algorithm. The iterative steps of clustering and representation learning can be interpreted
as approximating and maximizing the log-likelihood function. The previous methods based on
instance discrimination form a special case in the proposed EM framework.

• We propose ProtoNCE, a new contrastive loss which improves the widely used InfoNCE [1, 3, 6, 9]
by dynamically estimating the concentration for the feature distribution around each prototype. We
provide explanations for PCL from an information theory perspective, by showing that the learned
prototypes contain more information about the image classes.

• PCL sets a new state-of-the-art for unsupervised representation learning on multiple benchmarks.

2 Related work

Our work is closely related to two main branches of studies in unsupervised/self-supervised learning:
instance-wise contrastive learning and deep unsupervised clustering.

Instance-wise contrastive learning. At the core of state-of-the-art unsupervised representation
learning algorithms [1, 2, 3, 4, 11, 5, 6, 7, 9], instance-wise contrastive learning aims to learn an
embedding space where samples (e.g. crops) from the same instance (e.g. an image) are pulled
closer and samples from different instances are pushed apart. To construct the contrastive loss for a
mini-batch of samples, positive instance features and negative instance features are generated for each
sample. Different contrastive learning methods vary in their strategy to generate instance features.
The memory bank approach [1] stores the features of all samples calculated in the previous step, and
selects from the memory bank to form positive and negative pairs. The end-to-end approach [2, 7, 9]
generates instance features using all samples within the current mini-batch, and apply the same
encoder to both the original samples and their augmented version. Recently, the momentum encoder
(MoCo) approach [3] is proposed, which encodes samples on-the-fly by a momentum-updated
encoder, and maintains a queue of instance features.

2







































Despite their improved performance, the existing methods based on instance-wise contrastive learning
have the following two major limitations, which can be addressed by the proposed PCL framework.

• The task of instance discrimination could be solved by exploiting low-level image differences, thus
the learned embeddings do not necessarily capture high-level semantics. This is supported by the
fact that the accuracy of instance classification often rapidly rises to a high level (>90% within 10
epochs) and further training gives limited informative signals. A recent study also shows that better
performance of instance discrimination could worsen the performance on downstream tasks [12].

• A sufficiently large number of negative instances need to be sampled, which inevitably yields
negative pairs that share similar semantic meaning and should be closer in the embedding space.
However, they are undesirably pushed apart by the contrastive loss. Such problem is defined as class
collision in [13] and is shown to hurt representation learning. Essentially, instance discrimination
learns an embedding space that only preserves the local smoothness around each instance but
largely ignores the global semantic structure of the dataset.

Deep unsupervised clustering. Clustering based methods have been proposed for deep unsuper-
vised learning. Approaches in [14, 15, 16, 17, 18, 19] jointly learn image embeddings and cluster
assignments, but they have not shown the ability to learn transferable representations from a large
scale of images. Closer to our work, DeepCluster [20] learns from millions of images by performing
iterative clustering and unsupervised representation learning. However, our method is conceptually
different from DeepCluster. In DeepCluster, the cluster assignments are considered as pseudo-labels
and a classification objective is optimized, which results in two weaknesses: (1) the high-dimensional
features from the penultimate layer of a ConvNet are not optimal for clustering and need to be PCA-
reduced; (2) an additional linear classification layer is frequently re-initialized which interferes with
representation learning. In our method, representation learning happens directly in a low-dimensional
embedding space, by optimizing a contrastive loss on the prototypes (cluster centroids). This frees
our method from the computationally expensive linear layer, and enables a much larger number of
clusters where each instance is assigned to multiple clusters of different granularity.

Self-supervised pretext tasks. Another line of self-supervised learning methods focus on training
DNNs to solve pretext tasks that lead to good image representations being learned. These tasks
usually involve hiding certain information about the input and training the network to recover those
missing information. Examples include image inpainting [21], colorization [22, 23], prediction
of patch orderings [24, 25] and image transformations [26, 27, 28, 29]. However, most of these
pretext tasks exploit specific structures of visual data, making them harder to generalize to other
domains. The proposed PCL is a more general learning framework with better theoretical justification.
Furthermore, PCL can incorporate the pretext tasks (e.g. Jigsaw [25] or Rotation [27]) as a form of
image transformation, which could potentially lead to improved performance.

3 Prototypical Contrastive Learning

3.1 Preliminaries

Given a training set X = {x1, x2, ..., xn} of n images, unsupervised visual representation learning
aims to learn an embedding function fθ (realized via a DNN) that maps X to V = {v1, v2, ..., vn}
with vi = fθ(xi), such that vi best describes xi. Instance-wise contrastive learning achieves this
objective by optimizing a contrastive loss function, such as InfoNCE [6, 3], defined as:

LInfoNCE =

n∑
i=1

− log
exp(vi · v′i/τ)∑r
j=0 exp(vi · v′j/τ)

, (1)

where v′i is a positive embedding for instance i, and v′j includes one positive embedding and r
negative embeddings for other instances, and τ is a temperature hyper-parameter. In MoCo [3], these
embeddings are obtained by feeding xi to a momentum encoder parametrized by θ′, v′i = fθ′(xi),
where θ′ is a moving average of θ.

In prototypical contrastive learning, we use prototypes c instead of v′, and replace the fixed tempera-
ture τ with a per-prototype concentration estimation φ. An overview of our training framework is
shown in Figure 2, where clustering and representation learning are performed iteratively at each
epoch. Next, we will delineate the theoretical framework of PCL based on EM. A pseudo-code of our
algorithm is given in appendix B.

3




































Encoder

Momentum
Encoder

Clustering

Back Propagation

E-step

M-step
Input

ProtoNCE

Figure 2: Training framework of Prototypical Contrastive Learning.

3.2 PCL as Expectation-Maximization

Our objective is to find the network parameters θ that maximizes the log-likelihood function of the
observed n samples:

θ∗ = argmax
θ

n∑
i=1

log p(xi; θ) (2)

We assume that the observed data {xi}ni=1 are related to latent variable C = {ci}ki=1 which denotes
the prototypes of the data. In this way, we can re-write the log-likelihood function as:

θ∗ = argmax
θ

n∑
i=1

log p(xi; θ) = argmax
θ

n∑
i=1

log
∑
ci∈C

p(xi, ci; θ) (3)

It is hard to optimize this function directly, so we use a surrogate function to lower-bound it:
n∑
i=1

log
∑
ci∈C

p(xi, ci; θ) =

n∑
i=1

log
∑
ci∈C

Q(ci)
p(xi, ci; θ)

Q(ci)
≥

n∑
i=1

∑
ci∈C

Q(ci) log
p(xi, ci; θ)

Q(ci)
, (4)

where Q(ci) denotes some distribution over c’s (
∑
ci∈C Q(ci) = 1), and the last step of derivation

uses Jensen’s inequality. To make the inequality hold with equality, we require p(xi,ci;θ)
Q(ci)

to be a
constant. Therefore, we have:

Q(ci) =
p(xi, ci; θ)∑
ci∈C p(xi, ci; θ)

=
p(xi, ci; θ)

p(xi; θ)
= p(ci;xi, θ) (5)

By ignoring the constant −
∑n
i=1

∑
ci∈C Q(ci) logQ(ci) in Equation 4, we should maximize:
n∑
i=1

∑
ci∈C

Q(ci) log p(xi, ci; θ) (6)

E-step. In this step, we aim to estimate p(ci;xi, θ). To this end, we perform k-means on the features
v′i = fθ′(xi) given by the momentum encoder to obtain k clusters. We define prototype ci as the
centroid for the i-th cluster. Then, we compute p(ci;xi, θ) = 1(xi ∈ ci), where 1(xi ∈ ci) = 1 if xi
belongs to the cluster represented by ci; otherwise 1(xi ∈ ci) = 0. Similar to MoCo [3], we found
features from the momentum encoder yield more consistent clusters.

M-step. Based on the E-step, we are ready to maximize the lower-bound in Equation 6.
n∑
i=1

∑
ci∈C

Q(ci) log p(xi, ci; θ) =

n∑
i=1

∑
ci∈C

p(ci;xi, θ) log p(xi, ci; θ)

=

n∑
i=1

∑
ci∈C

1(xi ∈ ci) log p(xi, ci; θ)
(7)

Under the assumption of a uniform prior over cluster centroids, we have:

p(xi, ci; θ) = p(xi; ci, θ)p(ci; θ) =
1

k
· p(xi; ci, θ), (8)

where we set the prior probability p(ci; θ) for each ci as 1/k since we are not provided any samples.

4














Text Box
marginal distr.
































Text Box
This is constant wrt theta











Text Box
The i-th sample can belong to any cluster if we are not given information about it (no info abt x_i)






We assume that the distribution around each prototype is an isotropic Gaussian, which leads to:

p(xi; ci, θ) = exp

(
−(vi − cs)2

2σ2
s

)/ k∑
j=1

exp

(
−(vi − cj)2

2σ2
j

)
, (9)

where vi = fθ(xi) and xi ∈ cs. If we apply `2-normalization to both v and c, then (v−c)2 = 2−2v·c.
Combining this with Equations 3, 4, 6, 7, 8, 9, we can write maximum log-likelihood estimation as

θ∗ = argmin
θ

n∑
i=1

− log
exp(vi · cs/φs)∑k
j=1 exp(vi · cj/φj)

, (10)

where φ ∝ σ2 denotes the concentration level of the feature distribution around a prototype and will
be introduced later. Note that Equation 10 has a similar form as the InfoNCE loss in Equation 1.
Therefore, InfoNCE can be interpreted as a special case of the maximum log-likelihood estimation,
where the prototype for a feature vi is the augmented feature v′i from the same instance (i.e. c = v′),
and the concentration of the feature distribution around each instance is fixed (i.e. φ = τ ).

In practice, we take the same approach as NCE and sample r negative prototypes to calculate
the normalization term. We also cluster the samples M times with different number of clusters
K = {km}Mm=1, which enjoys a more robust probability estimation of prototypes that encode
the hierarchical structure. Furthermore, we add the InfoNCE loss to retain the property of local
smoothness and help bootstrap clustering. Our overall objective, namely ProtoNCE, is defined as

LProtoNCE =

n∑
i=1

−
(
log

exp(vi · v′i/τ)∑r
j=0 exp(vi · v′j/τ)

+
1

M

M∑
m=1

log
exp(vi · cms /φms )∑r
j=0 exp(vi · cmj /φmj )

)
. (11)

3.3 Concentration estimation

The distribution of embeddings around each prototype has different level of concentration. We use φ
to denote the concentration estimation, where a smaller φ indicates larger concentration. Here we
calculate φ using the momentum features {v′z}Zz=1 that are within the same cluster as a prototype c.
The desired φ should be small (high concentration) if (1) the average distance between v′z and c is
small, and (2) the cluster contains more feature points (i.e. Z is large). Therefore, we define φ as:

φ =

∑Z
z=1‖v′z − c‖2
Z log(Z + α)

, (12)

where α is a smooth parameter to ensure that small clusters do not have an overly-large φ. We
normalize φ for each set of prototypes Cm such that they have a mean of τ .

In the ProtoNCE loss (Equation 11), φms acts as a scaling factor on the similarity between an
embedding vi and its prototype cms . With the proposed φ, the similarity in a loose cluster (larger
φ) are down-scaled, pulling embeddings closer to the prototype. On the contrary, embeddings in a
tight cluster (smaller φ) have an up-scaled similarity, thus less encouraged to approach the prototype.
Therefore, learning with ProtoNCE yields more balanced clusters with similar concentration, as
shown in Figure 3(a). It prevents a trivial solution where most embeddings collapse to a single cluster,
a problem that could only be heuristically addressed by data-resampling in DeepCluster [20].

3.4 Mutual information analysis

It has been shown that minimizing InfoNCE is maximizing a lower bound on the mutual information
(MI) between representations V and V ′ [6]. Similarly, minimizing the proposed ProtoNCE can be
considered as simultaneously maximizing the mutual information between V and all the prototypes
{V ′, C1, ..., CM}. This leads to better representation learning, for two reasons.

First, the encoder would learn the shared information among prototypes, and ignore the individual
noise that exists in each prototype. The shared information is more likely to capture higher-level
semantic knowledge. Second, we show that compared to instance features, prototypes have a
larger mutual information with the class labels. We estimate the mutual information between the
instance features (or their assigned prototypes) and the ground-truth class labels for all images in
ImageNet [30] training set, following the method in [31]. We compare the obtained MI of our method

5





Text Box
Why do we assume isotropic Gaussians? Why not the general multivariate Gaussians?





















1-10 10-20 20-30 30-40 40-50 50-60 60-70 70-150

Cluster Size

0

5000

10000

15000

20000

Estimated Concentration
Fixed Concentration

Histogram

(a)

20 30 40 50 60 70 80 90 100 110 120

Epoch

4

4.5

5

5.5

6

M
I 
w
ith

 C
la
s
s
 L
a
b
e
ls

Prototypes (ProtoNCE)
Prototypes (InfoNCE)
Features (InfoNCE)

(b)
Figure 3: (a) Histogram of cluster size for PCL (#clusters k=50000) with fixed or estimated concentration.
Using a different φ for each prototype yields more balanced clusters with similar sizes, which leads to better
representation learning. (b) Mutual info between instance features (or their assigned prototypes) and class labels
of all images in ImageNet. Compared to InfoNCE, our ProtoNCE learns better prototypes with more semantics.

(ProtoNCE) and that of MoCo [3] (InfoNCE). As shown in Figure 3(b), compared to instance features,
the prototypes have a larger MI with the class labels due to the effect of clustering. Furthermore,
compared to InfoNCE, training on ProtoNCE can increase the MI of prototypes as training proceeds,
indicating that better representations are learned to form more semantically-meaningful clusters.

3.5 Prototypes as linear classifier

Another interpretation of PCL can provide more insights into the nature of the learned prototypes.
The optimization in Equation 10 is similar to optimizing the cluster-assignment probability p(s;xi, θ)
using the cross-entropy loss, where the prototypes c represent weights for a linear classifier. With
k-means clustering, the linear classifier has a fixed set of weights as the mean vectors for the repre-
sentations in each cluster, c = 1

Z

∑Z
z=1 v

′
z . A similar idea has been used for few-shot learning [32],

where a non-parametric prototypical classifier performs better than a parametric linear classifier.

3.6 Implementation details

It has been shown that the performance of unsupervised learned representations can be improved
by using a larger network, adopting stronger data augmentation, training for more epochs, or using
a larger batchsize [33, 9, 34, 4]. However, these improvements usually come at the cost of more
computation resources. Therefore, to enable a fair and direct comparison with previous methods, we
follow the same setting for unsupervised training as MoCo [3]. We perform training on the ImageNet-
1M dataset with 1000 classes. A ResNet-50 [35] is adopted as the encoder, whose last fully-connected
layer outputs a 128-D and L2-normalized feature [1]. We perform additional experiments using
a non-linear projection head (a 2-layer MLP), which has been shown to improve representation
learning [9, 33]. For efficient clustering, we adopt the GPU k-means implementation in faiss [36].
More details about our method (pseudo-code of our algorithm, convergence proof, experimental
settings, cluster analysis, and representation visualization) are given in appendices.

4 Experiments

Following common practice in self-supervised learning [37], we evaluate PCL on transfer learning
tasks, based on the principle that a good representation should transfer with limited supervision
and limited fine-tuning. The most important baseline is MoCo [3], the recent SOTA instance-wise
contrastive learning method. To enable fair and direct comparisons, we follow the settings in [3].

4.1 Image classification with limited training data

Low-shot classification. We evaluate the learned representation on image classification tasks with
few training samples per-category. We follow the setup in [37] and train linear SVMs using fixed
representations on two datasets: Places205 [38] for scene recognition and PASCAL VOC2007 [39]
for object classification. We vary the number k of samples per-class and report the average result
across 5 independent runs. Table 1 shows the results, in which our method substantially outperforms
both MoCo [3] and SimCLR [9].

6












Method architecture VOC07 Places205
k=1 k=2 k=4 k=8 k=16 k=1 k=2 k=4 k=8 k=16

Random ResNet-50 8.0 8.2 8.2 8.2 8.5 0.7 0.7 0.7 0.7 0.7
Supervised 54.3 67.8 73.9 79.6 82.3 14.9 21.0 26.9 32.1 36.0
Jigsaw [25, 37]

ResNet-50
26.5 31.1 40.0 46.7 51.8 4.6 6.4 9.4 12.9 17.4

MoCo [3] 31.4 42.0 49.5 60.0 65.9 8.8 13.2 18.2 23.2 28.0
PCL (ours) 46.9 56.4 62.8 70.2 74.3 11.3 15.7 19.5 24.1 28.4
SimCLR [9] ResNet-50-MLP 32.7 43.1 52.5 61.0 67.1 9.4 14.2 19.3 23.7 28.3
PCL v2 (ours) 47.9 59.6 66.2 74.5 78.3 12.5 17.5 23.2 28.1 32.3

Table 1: Low-shot image classification on both VOC07 and Places205 datasets using linear SVMs trained on
fixed representations. All methods were pretrained on ImageNet-1M dataset (except for Jigsaw [25, 37] trained
on ImageNet-14M). We vary the number of labeled examples k and report the mAP (for VOC) and accuracy (for
Places) across 5 runs. Results for Jigsaw were taken from [37]. We use the released pretrained model for MoCo,
and re-implement SimCLR. MoCo, SimCLR, and PCL are trained for the same number of epochs (200 epochs).

Semi-supervised image classification. We perform semi-supervised learning experiments to eval-
uate whether the learned representation can provide a good basis for fine-tuning. Following the
setup from [1, 4], we randomly select a subset (1% or 10%) of ImageNet training data (with labels),
and fine-tune the self-supervised trained model on these subsets. Table 2 reports the top-5 accuracy
on ImageNet validation set. Our method sets a new state-of-the-art under 200 training epochs,
outperforming both self-supervised learning methods and semi-supervised learning methods.

Method architecture #pretrain Top-5 Accuracy
epochs 1% 10%

Random [1] ResNet-50 - 22.0 59.0
Supervised baseline [40] ResNet-50 - 48.4 80.4
Semi-supervised learning methods:
Pseudolabels [40] ResNet-50v2 - 51.6 82.4
VAT + Entropy Min. [41, 40] ResNet-50v2 - 47.0 83.4
S4L Exemplar [40] ResNet-50v2 - 47.0 83.7
S4L Rotation [40] ResNet-50v2 - 53.4 83.8
Self-supervised learning methods:
Instance Discrimination [1] ResNet-50 200 39.2 77.4
Jigsaw [25, 4] ResNet-50 90 45.3 79.3
SimCLR [9] ResNet-50-MLP 200 56.5 82.7
MoCo [3] ResNet-50 200 56.9 83.0
PIRL [4] ResNet-50 800 57.2 83.8
PCL (ours) ResNet-50 200 75.3 85.6

Table 2: Semi-supervised learning on ImageNet. We report top-5 accuracy on the ImageNet validation set of
self-supervised models that are finetuned on 1% or 10% of labeled data. We use the released pretrained model
for MoCo, and re-implement SimCLR; all other numbers are adopted from corresponding papers.

4.2 Image classification benchmarks

Linear classifiers. Next, we train linear classifiers on fixed image representations using the entire
labeled training data. We follow previous setup [37, 4] and evaluate the performance of such linear
classifiers on three datasets, including ImageNet, VOC07, and Places205. Table 3 reports the
results. PCL achieves the highest single-crop top-1 accuracy of all self-supervised methods that use a
ResNet-50 model with no more than 200 pretrain epochs.

KNN classifiers. Following [1, 11], we perform k-nearest neighbor (kNN) classification on ImageNet
using the learned representations. For a query image with feature v, we take its top k nearest neighbors
from the momentum features, and perform weighted-combination of their labels where the weights
are calculated by exp(v · v′i/τ). Table 4 reports the accuracy. Our method significantly outperforms
previous methods while requiring fewer number of neighbors (20 neighbors as compared to 200
in [1, 11]).

7



Method architecture #pretrain Dataset
(#params) epochs ImageNet VOC07 Places205

Colorization [22, 37] R50 (24M) 28 39.6 55.6 37.5
Jigsaw [25, 37] R50 (24M) 90 45.7 64.5 41.2
Rotation [27, 4] R50 (24M) – 48.9 63.9 41.4
DeepCluster [20, 28] VGG(15M) 100 48.4 71.9 37.9
BigBiGAN [42] R50 (24M) – 56.6 – –
InstDisc [1] R50 (24M) 200 54.0 – 45.5
MoCo [3] R50 (24M) 200 60.6 79.2∗ 48.9∗

PCL (ours) R50 (24M) 200 61.5 82.3 49.2
SimCLR [9] R50-MLP (28M) 200 61.9 – –
PCL v2 (ours) R50-MLP (28M) 200 67.6 85.4 50.3
LocalAgg [11] R50 (24M) 200 60.2† – 50.1†

SelfLabel [43] R50 (24M) 400 61.5 – –
CPC [6] R101 (28M) – 48.7 – –
CPCv2 [34] R170w (303M) ∼200 65.9 – –
CMC [7] R50L+ab (47M) 280 64.0 – –
PIRL [4] R50 (24M) 800 63.6 81.1 49.8
AMDIM [8] Custom (626M) 150 68.1† – 55.0†

SimCLR [9] R50-MLP (28M) 1000 69.3† 80.5† –

Table 3: Image classification with linear models. We report top-1 accuracy. Numbers with ∗ are from released
pretrained model; all other numbers are adopted from corresponding papers.
†: LocalAgg uses 10-crop evaluation. CMC and ADMIM uses FastAutoAugment [44] that is supervised by
ImageNet labels. SimCLR requires a large batch size of 4096 allocated on 128 TPUs.

Method Instance Disc. [1] MoCo [3] Local Agg. [11] PCL (ours)

Accuracy 46.5 47.1 49.4 54.5

Table 4: Image classification with kNN classifiers using ResNet-50 features on ImageNet. We report top-1
accuracy. Results for [1, 11] are taken from corresponding papers. Result for MoCo is from released model.

4.3 Object detection

We further assess the generalization capacity of the learned representation on object detection.
Following [37], we train a Faster R-CNN [45] model on VOC07 or VOC07+12, and evaluate on
the test set of VOC07. We keep the pretrained backbone frozen to better evaluate the learned
representation, and use the same training schedule for both the supervised and self-supervised
methods. Table 5 reports the average mAP across three independent runs. Our method substantially
closes the gap between self-supervised methods and supervised training.

In the appendices, we show the results for fine-tuning the pretrained model for object detection and
instance segmentation on COCO [46]. PCL outperforms both MoCo and supervised training.

Method Pretrain Dataset Architecture Training data
VOC07 VOC07+12

Supervised ImageNet-1M Resnet-50-FPN 72.8 79.3
Jigsaw [25, 37] ImageNet-14M Resnet-50-C4 62.7 64.8
MoCo [3] ImageNet-1M Resnet-50-FPN 66.4 73.5
PCL (ours) ImageNet-1M Resnet-50-FPN 71.7 78.5

Table 5: Object detection for frozen conv body on VOC using Faster R-CNN. We measure the average
mAP@0.5 on VOC07 test set across three runs.

5 Conclusion
This paper proposed Prototypical Contrastive Learning, a generic unsupervised representation learning
framework that finds network parameters to maximize the log-likelihood of the observed data. We
introduce prototypes as latent variables, and perform iterative clustering and representation learning
in an EM-based framework. PCL learns an embedding space which encodes the semantic structure of
data, by training on the proposed ProtoNCE loss. Our extensive experiments on multiple benchmarks
demonstrate the state-of-the-art performance of PCL for unsupervised representation learning.

8









Broader impacts

Our research advances unsupervised representation learning especially for computer vision, which
alleviates the need for expensive human annotation when training deep neural network models. By
utilizing the enormous amount of unlabeled images available on the web, smarter AI systems can
be built with stronger visual representation abilities. However, unsupervised representation learning
puts heavy requirement on computational resource during the pretraining stage, which could be
costly both financially and environmentally. Therefore, more efforts are needed towards reducing the
computational cost for unsupervised learning. As part of the efforts, we will release our pretrained
models to facilitate future research in downstream applications without the expensive retraining.

References
[1] Wu, Z., Y. Xiong, S. X. Yu, et al. Unsupervised feature learning via non-parametric instance discrimination.

In CVPR, pages 3733–3742. 2018.

[2] Ye, M., X. Zhang, P. C. Yuen, et al. Unsupervised embedding learning via invariant and spreading instance
feature. In CVPR, pages 6210–6219. 2019.

[3] He, K., H. Fan, Y. Wu, et al. Momentum contrast for unsupervised visual representation learning. In CVPR.
2020.

[4] Misra, I., L. van der Maaten. Self-supervised learning of pretext-invariant representations. arXiv preprint
arXiv:1912.01991, 2019.

[5] Hjelm, R. D., A. Fedorov, S. Lavoie-Marchildon, et al. Learning deep representations by mutual information
estimation and maximization. In ICLR. 2019.

[6] Oord, A. v. d., Y. Li, O. Vinyals. Representation learning with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

[7] Tian, Y., D. Krishnan, P. Isola. Contrastive multiview coding. arXiv preprint arXiv:1906.05849, 2019.

[8] Bachman, P., R. D. Hjelm, W. Buchwalter. Learning representations by maximizing mutual information
across views. arXiv preprint arXiv:1906.00910, 2019.

[9] Chen, T., S. Kornblith, M. Norouzi, et al. A simple framework for contrastive learning of visual representa-
tions. arXiv preprint arXiv:2002.05709, 2020.

[10] Gutmann, M., A. Hyvärinen. Noise-contrastive estimation: A new estimation principle for unnormalized
statistical models. In AISTATS, pages 297–304. 2010.

[11] Zhuang, C., A. L. Zhai, D. Yamins. Local aggregation for unsupervised learning of visual embeddings. In
ICCV, pages 6002–6012. 2019.

[12] Tschannen, M., J. Djolonga, P. K. Rubenstein, et al. On mutual information maximization for representation
learning. In ICLR. 2020.

[13] Saunshi, N., O. Plevrakis, S. Arora, et al. A theoretical analysis of contrastive unsupervised representation
learning. In ICML, pages 5628–5637. 2019.

[14] Xie, J., R. B. Girshick, A. Farhadi. Unsupervised deep embedding for clustering analysis. In ICML, pages
478–487. 2016.

[15] Yang, J., D. Parikh, D. Batra. Joint unsupervised learning of deep representations and image clusters. In
CVPR, pages 5147–5156. 2016.

[16] Liao, R., A. G. Schwing, R. S. Zemel, et al. Learning deep parsimonious representations. In NIPS, pages
5076–5084. 2016.

[17] Yang, B., X. Fu, N. D. Sidiropoulos, et al. Towards k-means-friendly spaces: Simultaneous deep learning
and clustering. In ICML, pages 3861–3870. 2017.

[18] Chang, J., L. Wang, G. Meng, et al. Deep adaptive image clustering. In ICCV, pages 5880–5888. 2017.

[19] Ji, X., J. F. Henriques, A. Vedaldi. Invariant information clustering for unsupervised image classification
and segmentation. In ICCV, pages 9865–9874. 2019.

[20] Caron, M., P. Bojanowski, A. Joulin, et al. Deep clustering for unsupervised learning of visual features. In
ECCV, pages 139–156. 2018.

[21] Pathak, D., P. Krähenbühl, J. Donahue, et al. Context encoders: Feature learning by inpainting. In CVPR,
pages 2536–2544. 2016.

[22] Zhang, R., P. Isola, A. A. Efros. Colorful image colorization. In ECCV, pages 649–666. 2016.

9



[23] Zhang, R., P. Isola, A. Efros. Split-brain autoencoders: Unsupervised learning by cross-channel prediction.
In CVPR, pages 1058–1067. 2017.

[24] Doersch, C., A. Gupta, A. A. Efros. Unsupervised visual representation learning by context prediction. In
ICCV, pages 1422–1430. 2015.

[25] Noroozi, M., P. Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. In
ECCV, pages 69–84. 2016.

[26] Dosovitskiy, A., J. T. Springenberg, M. A. Riedmiller, et al. Discriminative unsupervised feature learning
with convolutional neural networks. In NIPS, pages 766–774. 2014.

[27] Gidaris, S., P. Singh, N. Komodakis. Unsupervised representation learning by predicting image rotations.
In ICLR. 2018.

[28] Caron, M., P. Bojanowski, J. Mairal, et al. Unsupervised pre-training of image features on non-curated
data. In ICCV, pages 2959–2968. 2019.

[29] Zhang, L., G. Qi, L. Wang, et al. AET vs. AED: unsupervised representation learning by auto-encoding
transformations rather than data. In CVPR. 2019.

[30] Deng, J., W. Dong, R. Socher, et al. Imagenet: A large-scale hierarchical image database. In CVPR, pages
248–255. 2009.

[31] Ross, B. C. Mutual information between discrete and continuous data sets. PloS one, 9(2), 2014.

[32] Snell, J., K. Swersky, R. S. Zemel. Prototypical networks for few-shot learning. In NIPS, pages 4077–4087.
2017.

[33] Chen, X., H. Fan, R. Girshick, et al. Improved baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297, 2020.

[34] Hénaff, O. J., A. Razavi, C. Doersch, et al. Data-efficient image recognition with contrastive predictive
coding. arXiv preprint arXiv:1905.09272, 2019.

[35] He, K., X. Zhang, S. Ren, et al. Deep residual learning for image recognition. In CVPR, pages 770–778.
2016.

[36] Johnson, J., M. Douze, H. Jégou. Billion-scale similarity search with gpus. arXiv preprint
arXiv:1702.08734, 2017.

[37] Goyal, P., D. Mahajan, A. Gupta, et al. Scaling and benchmarking self-supervised visual representation
learning. In ICCV, pages 6391–6400. 2019.

[38] Zhou, B., À. Lapedriza, J. Xiao, et al. Learning deep features for scene recognition using places database.
In NIPS, pages 487–495. 2014.

[39] Everingham, M., L. V. Gool, C. K. I. Williams, et al. The pascal visual object classes (VOC) challenge.
International Journal of Computer Vision, 88(2):303–338, 2010.

[40] Zhai, X., A. Oliver, A. Kolesnikov, et al. S4l: Self-supervised semi-supervised learning. In ICCV, pages
1476–1485. 2019.

[41] Miyato, T., S. Maeda, M. Koyama, et al. Virtual adversarial training: A regularization method for
supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell., 41(8):1979–1993, 2019.

[42] Donahue, J., K. Simonyan. Large scale adversarial representation learning. In NeurIPS, pages 10541–10551.
2019.

[43] Asano, Y. M., C. Rupprecht, A. Vedaldi. Self-labelling via simultaneous clustering and representation
learning. In ICLR. 2020.

[44] Lim, S., I. Kim, T. Kim, et al. Fast autoaugment. In NeurIPS, pages 6662–6672. 2019.

[45] Ren, S., K. He, R. B. Girshick, et al. Faster R-CNN: towards real-time object detection with region
proposal networks. In NIPS, pages 91–99. 2015.

[46] Lin, T., M. Maire, S. J. Belongie, et al. Microsoft COCO: common objects in context. In ECCV, pages
740–755. 2014.

[47] He, K., G. Gkioxari, P. Dollár, et al. Mask R-CNN. In ICCV, pages 2980–2988. 2017.

[48] Girshick, R., I. Radosavovic, G. Gkioxari, et al. Detectron. https://github.com/facebookresearch/
detectron, 2018.

[49] Fan, R., K. Chang, C. Hsieh, et al. LIBLINEAR: A library for large linear classification. JMLR, 9:1871–
1874, 2008.

[50] Chen, K., J. Wang, J. Pang, et al. MMDetection: Open mmlab detection toolbox and benchmark. arXiv
preprint arXiv:1906.07155, 2019.

10

https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron


[51] Nguyen, X. V., J. Epps, J. Bailey. Information theoretic measures for clusterings comparison: Variants,
properties, normalization and correction for chance. J. Mach. Learn. Res., 11:2837–2854, 2010.

[52] Maaten, L. v. d., G. Hinton. Visualizing data using t-sne. Journal of machine learning research, 9:2579–
2605, 2008.

11



A Training details for unsupervised learning
For the unsupervised learning experiment, We follow previous works [3, 1] and perform data
augmentation with random crop, random color jittering, random horizontal flip, and random grayscale
conversion. We use SGD as our optimizer, with a weight decay of 0.0001, a momentum of 0.9, and a
batch size of 256. We train for 200 epochs, where we warm-up the network in the first 20 epochs by
only using the InfoNCE loss. The initial learning rate is 0.03, and is multiplied by 0.1 at 120 and
160 epochs. In terms of the hyper-parameters, we set τ = 0.1, α = 10, r = 16000, and number of
clusters K = {25000, 50000, 100000}. For PCL v2, we follow [9, 33] and use a MLP projection
layer, stronger data augmentation with additional Gaussian blur, and temperature τ = 0.2. The
clustering is performed per-epoch on center-cropped images. We find over-clustering to be beneficial.
We use the GPU k-means implementation in faiss [36] which takes less than 20 seconds. Overall,
PCL introduces ∼ 1/3 computational overhead compared to MoCo.

B Pseudo-code for Prototypical Contrastive Learning

Algorithm 1: Prototypical Contrastive Learning.

1 Input: encoder fθ , training dataset X , number of clusters K = {km}Mm=1

2 θ′ = θ // initialize momentum encoder as the encoder
3 while not MaxEpoch do

/* E-step */
4 V ′ = fθ′(X) // get momentum features for all training data
5 for m = 1 to M do
6 Cm = k−means(V ′, km) // cluster V ′ into km clusters, return prototypes
7 φm = Concentration(Cm, V ′) // estimate the distribution concentration around

each prototype with Equation 12
8 end

/* M-step */
9 for x in Dataloader(X) do // load a minibatch x

10 v = fθ(x), v
′ = fθ′(x) // forward pass through encoder and momentum encoder

11 LProtoNCE(v, v
′, {Cm}Mm=1, {φm}Mm=1) // calculate loss with Equation 11

12 θ = SGD(LProtoNCE, θ) // update encoder parameters
13 θ′ = 0.999 ∗ θ′ + 0.001 ∗ θ // update momentum encoder
14 end
15 end

C Convergence proof
Here we provide the proof that the proposed PCL would converge. Suppose let

F (θ) =

n∑
i=1

log p(xi; θ) =

n∑
i=1

log
∑
ci∈C

p(xi, ci; θ) =

n∑
i=1

log
∑
ci∈C

Q(ci)
p(xi, ci; θ)

Q(ci)

≥
n∑
i=1

∑
ci∈C

Q(ci) log
p(xi, ci; θ)

Q(ci)
.

(13)

We have shown in Section 3.2 that the above inequality holds with equality whenQ(ci) = p(ci;xi, θ).

At the t-th E-step, we have estimated Qt(ci) = p(ci;xi, θ
t). Therefore we have:

F (θt) =

n∑
i=1

∑
ci∈C

Qt(ci) log
p(xi, ci; θ

t)

Qt(ci)
. (14)

At the t-th M-step, we fix Qt(ci) = p(ci;xi, θ
t) and train parameter θ to maximize Equation 14.

Therefore we always have:

F (θt+1) ≥
n∑
i=1

∑
ci∈C

Qt(ci) log
p(xi, ci; θ

t+1)

Qt(ci)
≥

n∑
i=1

∑
ci∈C

Qt(ci) log
p(xi, ci; θ

t)

Qt(ci)
= F (θt). (15)

The above result suggests that F (θt) monotonously increase along with more iterations. Hence the
algorithm will converge.

12









Method APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

Supervised 40.0 59.9 43.1 34.7 56.5 36.9
MoCo [3] 40.7 60.5 44.1 35.4 57.3 37.6
PCL (ours) 41.0 60.8 44.2 35.6 57.4 37.8

Table 6: Object detection and instance segmentation fine-tuned on COCO. We evaluate bounding-box AP
(APbb) and mask AP (APmk) on val2017.

D COCO object detection and segmentation

Following the experiment setting in [3], we use Mask R-CNN [47] with C4 backbone. We finetune
all layers end-to-end on the COCO train2017 set and evaluate on val2017. The schedule is the default
2× in [48]. PCL outperforms both MoCo [3] and supervised pre-training in all metrics.

E Training details for transfer learning experiments

For training linear SVMs on Places and VOC, we follow the procedure in [37] and use the LIBLIN-
EAR [49] package. We preprocess all images by resizing to 256 pixels along the shorter side and
taking a 224× 224 center crop. The linear SVMs are trained on the global average pooling features
of ResNet-50.

For image classification with linear models, we use the pretrained representations from the global
average pooling features (2048-D) for ImageNet and VOC, and the conv5 features (averaged pooled
to ∼9000-D) for Places. We train a linear SVM for VOC, and a logistic regression classifier (a
fully-connected layer followed by softmax) for ImageNet and Places. The logistic regression classifier
is trained using SGD with a momentum of 0.9. For ImageNet, we train for 100 epochs with an initial
learning rate of 10 and a weight decay of 0. Similar hyper-parameters are used by [3]. For Places, we
train for 40 epochs with an initial learning rate of 0.3 and a weight decay of 0.

For semi-supervised learning, we finetune ResNet-50 with pretrained weights on a subset of ImageNet
with labels. We optimize the model with SGD, using a batch size of 256, a momentum of 0.9, and a
weight decay of 0.0005. We apply different learning rate to the ConvNet and the linear classifier. The
learning rate for the ConvNet is 0.01, and the learning rate for the classifier is 0.1 (for 10% labels) or
1 (for 1% labels). We train for 20 epochs, and drop the learning rate by 0.2 at 12 and 16 epochs.

For object detection on VOC, We use the R50-FPN backbone for the Faster R-CNN detector available
in the MMdetection [50] codebase. We freeze all the conv layers and also fix the BatchNorm
parameters. The model is optimized with SGD, using a batch size of 8, a momentum of 0.9, and a
weight decay of 0.0001. The initial learning rate is set as 0.05. We finetune the models for 15 epochs,
and drop the learning rate by 0.1 at 12 epochs.

F Adjusted mutual information

In order to evaluate the quality of the clusters produced by PCL, we compute the adjusted mutual
information score (AMI) [51] between the clusterings and the ground-truth labels for ImageNet
training data. AMI is adjusted for chance which accounts for the bias in MI to give high values to
clusterings with a larger number of clusters. AMI has a value of 1 when two partitions are identical,
and an expected value of 0 for random (independent) partitions. In Figure 4, we show the AMI
scores for three clusterings obtained by PCL, with number of clusters K = {25000, 50000, 100000}.
In Table 7, we show that compared to DeepCluster [20] and MoCo [3], PCL produces clusters of
substantially higher quality.

Method DeepCluster [20] MoCo [3] PCL (ours)

AMI 0.281 0.285 0.410

Table 7: Adjusted mutual information score for k-means clustering (k = 25000) on ImageNet representation
learned with different methods. PCL produces clusters of higher quality.

13



20 40 60 80 100 120 140 160 180 200

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

A
M
I

K=25000
K=50000
K=100000

Figure 4: Adjusted mutual information score between the clusterings generated by PCL and the ground-truth
labels for ImageNet training data.

G Visualization of learned representation

In Figure 5, we visualize the unsupervised learned representation of ImageNet training images using
t-SNE [52]. Compared to the representation learned by MoCo, the representation learned by the
proposed PCL forms more separated clusters, which also suggests representation of lower entropy.

H Visualization of clusters

In Figure 6, we show ImageNet training images that are randomly chosen from clusters generated
by the proposed PCL. PCL not only clusters images from the same class together, but also finds
fine-grained patterns that distinguish sub-classes, demonstrating its capability to learn useful semantic
representations.

14



Figure 5: T-SNE visualization of the unsupervised learned representation for ImageNet training images from
the first 60 classes. Left: MoCo; Right: PCL (ours). Colors represent classes.

15



Figure 6: Visualization of randomly chosen clusters generated by PCL. Green boarder marks top-5 images
that are closest to fine-grained prototypes (K = 100k). Orange boarder marks images randomly chosen from
coarse-grained clusters (K = 50k) that also cover the same green images. PCL can discover hierarchical
semantic structures within the data (e.g. images with horse and man form a fine-grained cluster within the
coarse-grained horse cluster.)

16


	1 Introduction
	2 Related work
	3 Prototypical Contrastive Learning
	3.1 Preliminaries
	3.2 PCL as Expectation-Maximization
	3.3 Concentration estimation
	3.4 Mutual information analysis
	3.5 Prototypes as linear classifier
	3.6 Implementation details

	4 Experiments
	4.1 Image classification with limited training data
	4.2 Image classification benchmarks
	4.3 Object detection

	5 Conclusion
	A Training details for unsupervised learning
	B Pseudo-code for Prototypical Contrastive Learning
	C Convergence proof
	D COCO object detection and segmentation
	E Training details for transfer learning experiments
	F Adjusted mutual information
	G Visualization of learned representation

	H Visualization of clusters


